A Peek into RL

Introduction to Reinforcement Learning

01

Terminology

Basic concepts in RL The major part of this workshop

02 Markov Process

Markov Decision Process, Markov Reward Process, Bellman Equations...

03 Classic Algorithms

MC, TD, DP... A simple introduction

04

Extensions and Recommendation

Real-life applications; Courses and materials for our audience to study independently

Introduction

What's Reinforcement Learning?

Teminologies: Rewards

- Reward Rt: A scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward (Reward Hypothesis)
- E.g., +/-ve reward for winning/losing a game

Find an optimal way to make decisions

- Sequential Decision Making
- With delayed rewards / penalties
- No future / long term feedbacks

- Policy: Agent's behavior function
- Value function: How good is each state and/or action
- Model: Agent's representation of the environment

Teminologies: Policy

- Policy: Agent's behavior, a map from state to action
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: π(a | s) = P[At = a | St = s]

Teminologies: Value Function

- Value Function: A prediction of future reward
- Used to evaluate the goodness/badness of states (to select between actions)

 $v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$

• Future reward / Return: a total sum of discounted rewards going forward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
 $V(s) = \mathbb{E}\left[G_t | S_t = s\right]$

• State Value: $V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$

Action Value:
$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] \rightarrow V_{\pi}(s) = \sum_{a \in A} Q_{\pi}(s,a)\pi(a|s)$$

Optimal Value and Policy

• The optimal value function produces the maximum return:

$$V_*(s)=\max_\pi V_\pi(s), Q_*(s,a)=\max_\pi Q_\pi(s,a)$$

• The optimal policy achieves optimal value functions:

$$\pi_* = rg\max_{\pi} V_{\pi}(s), \pi_* = rg\max_{\pi} Q_{\pi}(s,a)$$

- Relationship: $V_{\pi_*}(s) = V_*(s)$, $Q_{\pi_*}(s,a) = Q_*(s,a)$

Teminologies: Model

- A model predicts what the environment will do next
- *p* predicts the next state

 $\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$

• *R* predicts the next (immediate) reward

$$\mathcal{R}^{\mathsf{a}}_{\mathsf{s}} = \mathbb{E}\left[\mathsf{R}_{t+1} \mid \mathsf{S}_t = \mathsf{s}, \mathsf{A}_t = \mathsf{a}
ight.$$

- Know the model / Model-based RL: Planning with perfect information

Find the optimal solution by Dynamic Programming (DP) E.g., Longest increasing subsequence

- Does not know the model: learning with incomplete information

Model-free RL or learn the model in the algorithm

Categories of RL Algorithms

- **Model-based**: Rely on the model of the environment; Either the model is known or the algorithm learns it explicitly.
- **Model-free**: No dependency on the model during learning.
- **On-policy**: Use the deterministic outcomes or samples from the target policy to train the algorithm.
- **Off-policy**: Training on a distribution of transitions or episodes produced by a different behavior policy rather than that produced by the target policy.

Markov Process

MRP, MDP, Bellman Equations

MDPs

- Markov decision processes (MDPs) formally describe an environment for reinforcement learning where the environment is fully observable
- All states in MDP has the Markov property: the future only depends on the current state, not the history. A state St is Markov if and only if:

MDPs

٠

Recap: State transition probability $\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$

State transition matrix \mathcal{P} defines transition probabilities from all states s to all successor states s',

$$\mathcal{P} = from \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1.

A Markov process is a memoryless random process, i.e. a sequence of random states S1, S2, ... with the Markov property. Represented as a tuple $\langle S, P \rangle$

Example: Markov Chain Transition Matrix

MDPs

- Markov Reward Process (MRP): A Markov reward process is a Markov chain with values.
- Represented as a tuple < S, P, R, $\gamma >$
- A Markov deicison process (MDP) consists of five elements $\mathcal{M} = \langle S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - ${\mathcal S}$ a set of states;
 - $\mathcal A$ a set of actions;
 - P transition probability function;
 - R reward function;
 - γ discounting factor for future rewards. In an unknown environment, we do not have perfect knowledge about P and R.

Bellman Equations

• Bellman equations refer to a set of equations that decompose the value function into the immediate reward plus the discounted future values.

$$egin{aligned} V(s) &= \mathbb{E}[G_t | S_t = s] \ &= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s] \ &= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_t = s] \ &= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s] \ &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) | S_t = s] \end{aligned}$$

$$\begin{array}{c|c} v(s) \leftrightarrow s \\ r \\ v(s') \leftrightarrow s' \end{array} \bigcirc$$

$$\mathbf{v}(\mathbf{s}) = \mathcal{R}_{\mathbf{s}} + \gamma \sum_{\mathbf{s}' \in \mathcal{S}} \mathcal{P}_{\mathbf{ss}'} \mathbf{v}(\mathbf{s}')$$

$$egin{aligned} Q(s,a) &= \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}) \mid S_t = s, A_t = a] \ &= \mathbb{E}[R_{t+1} + \gamma \mathbb{E}_{a \sim \pi} Q(S_{t+1},a) \mid S_t = s, A_t = a] \end{aligned}$$

Bellman Equations

• Bellman equations refer to a set of equations that decompose the value function into the immediate reward plus the discounted future values.

Bellman Equations

- Linear Equations \rightarrow Could be solved directly
- Computational complexity is O(n^3) for n states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs,

e.g. Dynamic programming (DP) Monte-Carlo evaluation (MC) Temporal-Difference learning (TD)

$$egin{aligned} & m{v} &= \mathcal{R} + \gamma \mathcal{P} m{v} \ & (m{I} - \gamma \mathcal{P}) m{v} &= \mathcal{R} \ & m{v} &= (m{I} - \gamma \mathcal{P})^{-1} \, \mathcal{R} \end{aligned}$$

Bellman Expectation Equation (For MDPs)

$$\begin{aligned} \mathbf{v}_{\pi}(s) &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \mathbf{v}_{\pi}(S_{t+1}) \mid S_{t} = s \right] & v_{\pi}(s) \leftrightarrow s \\ \mathbf{v}_{\pi}(s) &= \sum_{\mathbf{a} \in \mathcal{A}} \pi(\mathbf{a}|s) q_{\pi}(s, \mathbf{a}) & q_{\pi}(s, a) \leftrightarrow a \end{aligned}$$

$$q_{\pi}(s,a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right] \qquad q_{\pi}(s,a) \leftrightarrow s, a$$

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_{\pi}(s') \qquad v_{\pi}(s') \leftrightarrow s' \bigcirc$$

Bellman Expectation Equations

 $A \setminus V$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right) \qquad q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

Bellman Expectation Equations

$$egin{aligned} V_{\pi}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) Q_{\pi}(s,a) \ Q_{\pi}(s,a) &= R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V_{\pi}(s') \ V_{\pi}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) ig(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V_{\pi}(s') ig) \ Q_{\pi}(s,a) &= R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} \sum_{a' \in \mathcal{A}} \pi(a'|s') Q_{\pi}(s',a') \end{aligned}$$

Matrix Form:

$$egin{aligned} & m{v}_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} m{v}_{\pi} \ & m{v}_{\pi} = (m{I} - \gamma \mathcal{P}^{\pi})^{-1} \, \mathcal{R}^{\pi} \end{aligned}$$

Bellman Optimality Equations

$$egin{aligned} V_*(s) &= \max_{a \in \mathcal{A}} Q_*(s,a) \ Q_*(s,a) &= R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V_*(s') \ V_*(s) &= \max_{a \in \mathcal{A}} \left(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} V_*(s')
ight) \ Q_*(s,a) &= R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{ss'} \max_{a' \in \mathcal{A}} Q_*(s',a') \end{aligned}$$

- Non-linear
- No closed form solutions in general
- Many iterative solution methods Value Iteration Policy Iteration Q-learning Sarsa

Classical

Algorithms

Dynamic Programming

- Policy Evaluation: $V_{t+1}(s) = \mathbb{E}_{\pi}[r + \gamma V_t(s')|S_t = s] = \sum_a \pi(a|s) \sum_{s',r} P(s',r|s,a)(r + \gamma V_t(s'))$
- Policy Improvement: $Q_{\pi}(s,a) = \mathbb{E}[R_{t+1} + \gamma V_{\pi}(S_{t+1})|S_t = s, A_t = a] = \sum_{r} P(s',r|s,a)(r + \gamma V_{\pi}(s'))$
- Policy Iteration: An iterative procedure to improve the policy when combining policy evaluation and improvement

 $\pi_0 \stackrel{ ext{inprove}}{\longrightarrow} V_{\pi_0} \stackrel{ ext{improve}}{\longrightarrow} \pi_1 \stackrel{ ext{evaluation}}{\longrightarrow} V_{\pi_1} \stackrel{ ext{improve}}{\longrightarrow} \pi_2 \stackrel{ ext{evaluation}}{\longrightarrow} \cdots \stackrel{ ext{improve}}{\longrightarrow} \pi_* \stackrel{ ext{evaluation}}{\longrightarrow} V_* \ Q_{\pi}(s, \pi'(s)) = Q_{\pi}(s, \arg\max_{a \in \mathcal{A}} Q_{\pi}(s, a)) \ = \max_{a \in \mathcal{A}} Q_{\pi}(s, a) \ge Q_{\pi}(s, \pi(s)) = V_{\pi}(s)$

About the Convergence

Someone raised a good question in the workshop: the convergence property of the policy iteration. Typically, the proof in <u>this link</u> would be helpful.

Also, it should be noted that for the policy-based RL, only local optimum is guaranteed.

Here are the pros and cons of the policy-based RL:

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Monte-Carlo Learning

• MC methods need to learn from complete episodes

$$V(s) = rac{\sum_{t=1}^T \mathbbm{1}[S_t = s]G_t}{\sum_{t=1}^T \mathbbm{1}[S_t = s]} \qquad \qquad Q(s, a) = rac{\sum_{t=1}^T \mathbbm{1}[S_t = s, A_t = a]G_t}{\sum_{t=1}^T \mathbbm{1}[S_t = s, A_t = a]}$$

Temporal Difference Learning

• TD learning can learn from incomplete episodes

 $egin{aligned} V(S_t) &\leftarrow (1-lpha)V(S_t) + lpha G_t \ V(S_t) &\leftarrow V(S_t) + lpha (G_t - V(S_t)) \ V(S_t) &\leftarrow V(S_t) + lpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \end{aligned}$

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$

Extensions

- Exploration and Exploitation
- DeepMind AI: Link
- Games
- Different methods to solve the same problem
- More to be explored...

References and Recommendations

Lectures:

- Stanford CS324
- 李宏毅《深度强化学习》
- RL by David Silver

Photos:

- A (Long) Peek into Reinforcement Learning
- Google

Textbooks:

- Reinforcement Learning: An introduction, by Sutton and Barto
- Algorithms for Reinforcement Learning by Csaba Szepesvari

THANKS!

Do you have any questions?

Contact: Nickname, WISE@CUHK Subscribe: <u>Google Form</u> Telegram Group: <u>Join</u>

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

